Answers to the organic chem classwork

This is to use in class.

Do not write on it.

Do not take this out of the room.

5	 ethanal 3-heptanone hexanimide methyl-ethyl ether	 ethene propyl hexanoate 3,4 dibromol hexyne cyclo-pentane
6	 4 ethyl,2-methyl octane ethyl ethanoate 2-octene 2-butyne	 3-hexanamine pentanamide methyl pentanoate cyclo-butane

1. Addition: 2 pentene $+\mathrm{Br}_{2}$ into 2,3 dibromopentane
2. Substitution: propane $+\mathrm{Cl}_{2}$ form 2chloropropane +HCl
3. Polymerization: tetrafluoroethene forms polytetrafluoroethane
4. Fermentation of GLUCOSE $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ into 2 products. Make sure to show yeast + water by the arrow.
5. Esterfication of 1-propanol and pentanoic acid forms propyl pentanoate
6. Saponification: write a word equation, not the structural molecules.

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{AQ})} \xrightarrow[\text { ENNYMES }]{\text { YEAT }} 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{AQ})}+2 \mathrm{CO}_{2(\mathrm{G})}$
 $+$

Saponification:

Triple Ester (FAT) $+3 \mathrm{NaOH} \rightarrow$ Triple Alcohol +3 SOAP molecules (each has one Na^{+1} ion)

| SCENT | Circle the Functional Groups ONLY
 in these STRUCTURAL FORMULAS | Name all
 Functional Groups
 in each molecule |
| :---: | :---: | :---: | :---: | :---: |
| banana | | |
| cinnamon | | |
| caraway | | |
| (rye bread) | | |
| (flowers) | | |

SCENT	Circle the Functional Groups ONLY in these STRUCTURAL FORMULAS	Name all Functional Groups in each molecule
hyacinth (flowers)		alcohol
jasmine		Ester
licorice		Ether
mushroom		Alcohol 16 H atoms in total (count the parentheses first, it's easier)
orange		Ester Octyl ethanoate
peach		Ester 20 H atoms in total (count the parentheses first, it's easier)

| SCENT | Name all
 in these STRUCTURAL FORMULAS
 Functional Groups
 in each molecule |
| :---: | :---: | :---: | :---: | :---: |
| peppermint | |

SCENT	Circle the Functional Groups ONLY in these STRUCTURAL FORMULAS	Name all Functional Groups in each molecule
Vinegar	$\mathrm{H}-\mathrm{C}$	Organic Acid ethanoic acid

strawberry		Ether and Ester
vanilla		Aldehyde Alcohol and Ether
wintergreen		Organic acid and Ester 5 double bonds

Homologous Series Name	general formula $\mathrm{n}=$ number of carbon atoms	EXAMPLES		
		$\underset{\text { (4 Carbon chains) }}{\text { Name }}$	Structural Diagrams with all hydrogen atoms showing And condensed structural formulas	
alkanes	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$	propane		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
alkenes	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$	propene		$\mathrm{CH}_{3} \mathrm{CHCH}_{3}$
alkynes	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$	propyne		CHCCH_{3}

2methyl, 4ethyl, 3fluoroheptane

5ethyl
3,6,7 trimethyl 1-octene

1chloro
3,3 difluoro
4,5 dimethyl 1 hexyne

CH_{3}

$\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl} \quad$ This is substitution

Draw out the molecules to show the addition reaction between 2 butyne + fluorine form into 2,3 difluro- 2 butene

Name the reactants and products in this esterification reaction

ethanol and ethanoic acid form into ethyl ethanoate and water

Name the reactants and products in this esterification reaction

methanol and
butanoic acid

methyl butanoate and water

Balance

$$
ـ \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{AQ})} \xrightarrow[+ \text { water }]{\xrightarrow{\text { Enzymes }}}
$$

this reaction

$$
2 \mathrm{CO}_{2(\mathrm{G})}+
$$

$$
2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{AQ})}
$$

Draw the structural diagrams AND condensed structural formulas showing these reactions.
Substitute in a fluorine atom with ethane, forming fluoro-ethane +HF

Substitute in a chlorine atom with propane, forming 1-chloropropane +HCl

Substitute in an iodine atom with propane, this time forming 2-iodo-propane +HI

$+\mathrm{HI}$

Substitute in a bromine atom with pentane, this time forming 2-bromopentane +HBr

Substitute in a fluorine atom with 2-bromopentane, this time forming 1-fluror,2-bromopentane + HF

With alkenes, the double bond becomes single. With alkynes, the triple bond becomes a double In both cases, ADD 2 ATOMS INTO THE NEW MOLECULE. In each box, draw structural formulas for each.

Add a bromine molecule to 2-pentene

Add a chlorine molecule to 2-butyne

Add a hydrogen molecule to propene

Add a hydrogen molecule to 1-butyne

Draw and label the structural diagrams for propanoic acid and for ethanol, and the two products.
Circle the OH and the H that makes the water. NAME both products that form.

Water
and
Ethyl propanoate

Combine methanol with hexanoic acid to produce the wonderful smell of bananas! Do the same as above, draw 2 diagrams for the acid and the alcohol, circle the -OH and the -H that forms water, then draw and properly name both products that form.

