Organic Chem Class Notes

 H_2N

OH O b

Which one is which? glycine is an amino acid ethanol is an alcohol benzene will give you cancer methyl hexanoate is why bananas smell propane is for burning Organic Chem Class notes

name:

- 1. ______ is the first atom of organic chemistry.
- 2. Carbon can make ______ bonds to other carbon atoms.
- 3. There are ______ in organic chem

4. Write the ten organic prefixes—how to count the carbon atoms in molecules. (LOOK at table P)

1	2	3	4	5
6	7	8	9	10

- 5. Carbon must make ____ bonds because carbon has an electron configuration of ______
- 6. Carbon atoms can make these types of bonds

7. Hydrogen atoms have one valence electron, they can only make

8. What is the name and formula of the simplest hydrocarbon?

9. _____are the simplest molecules in organic chem, made up of only hydrogen and carbon atoms.

10. Table Q is titled:

11. Homologous = HOMO + LOGOUS = _____

12. The three "bod	Example carbon bonding	
ALKANES	Which have	
ALKENES	Which have	
ALKYNES	Which have	

14. Alkane Name	# C	Structural Diagram	Molecular formula and Condensed Structural Formulas
	1		
	2		
	3		
	4		
	5		
	6		
	7		

14. Alkane Name	# C	Structural Diagram	Molecular formula and Condensed Structural Formulas
	8		
	9		
	10		

Organic Vocabulary

- 15. ______ is the study of chemical compounds that at one time were thought to be made only by living organisms like plants or animals. This is not true, nor was it.
- 16. _______ is the central atom in organic chem. Carbon makes
 4 bonds always, because of its electron configuration of 2-4. It can make single or double or even triple bonds to itself.
- 17. _____ are simple molecules in organic chem, made up of only of Hydrogen and carbon atoms, hence this name.
- 18. _____(title to Table Q) means having the "same body type" molecules made up of only H + C. Alkanes, alkenes, and alkynes contain ONLY single bonds, or a double bond, or a triple bond.

19. ALKANES...

	The Alkane general formula:	
	ex: the alkane with 4 carbon atoms (butane), what is it's formula?	
20.	The second homologous series of hydrocarbons is called the	
21	The general formule for allong is	
21.	They have less H's than alkanes because of the double C=C bond.	
22.	An alkene with 5 carbon atoms has the molecular formula of	
23.	In our class	double bond,
	but in the real world, multiple double bonds are possible in one molecule.	
24.	Methene is NOT possible.	
	In order to have a double bond between 2 carbon atoms you need 2 carbon atoms. Meth =	=

25. Draw ethene and propene now

ethene	propene (to the "right")	propene (to the "left")

Draw 2 kinds of butene now. There are 2 different ways to draw butene. Name them, and write the condensed structural formulas (this is new) as well.				
31 draw				
32	name	name		
33	Condensed structural formula	Condensed structural formula		
34	Isomers share a molecular formula:			

35	1-pentene		
36	2-pentene		
37	1-hexene		
38	3-hexene		
39		 40	41

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
42 Name and write out the condensed structural formula	43 Name and write out the condensed structural formula

44. The 3rd group of hydrocarbons are the _____

In our class ALKYNES only have ______ triple bond.

Naming and drawing will be just like the alkenes, the number tells where the triple bond is placed.

45. There is no ______ you need at least two carbon atoms to triple bond together.

46 Draw ETHYNE	Draw PROPYNE

47 Draw 1-butyne	Draw 2-butyne

48a	1-pentyne	
48b	2-pentyne	
48c	1-heptyne	
48d	3 heptyne	
	49	The general formula for all ALKYNES is If an alkyne has nine carbon atoms, what is its formula?

50. Table R lists all

51. Functional groups are added to hydrocarbons to make them ______, to make

them more difficult, to make them ______ or worse,

and to give them a wide variety of new ______.

52. The first, functional group we will add to hydrocarbons are the ______.

53.	HALOGENS	symbols	Organic Chem Prefix names

The rules to naming Halocarbons:

58a.

58b.

58c.

58d.

59 Draw	Name

60 Draw	Name
60 Draw	Name

61. Draw these	
1,1dibromo- 2,2 difluroethane	
difluoroethyne	
5bromo- 4,4 dichloro- 7,8,8trifluoro- 1,2,3,7 tetra-iodo- loctene	

62. name these five molecules...

Name	General Formula	Examples		
		Name	Structural Formula	
alkanes	$\mathbf{C}_{n}\mathbf{H}_{2n+2}$	ethane	H H I I H—C—C—H I I H H	
alkenes	C_nH_{2n}	ethene		
alkynes	$\mathbf{C}_{n}\mathbf{H}_{2n-2}$	ethyne	H−С≡С−Н	

Note: n = number of carbon atoms

64. Alkanes are ______ because 2 carbon atoms with single bonds can "hold" the most (six) hydrogen atoms

65. Alkenes and Alkynes are both

They have a double or triple bond, so the "hold" less hydrogen atoms (4 H or 2 H) than alkanes.

66.	Alkanes are saturated, they can't be "	" to.
-----	--	-------

67. Alkanes can undergo	reactions only.
(alkanes CANNOT undergo addition reactions).	

68. Alkenes & Alkynes are unsaturated, they undergo ______ reactions only. (alkenes and alkynes CANNOT undergo substitution reactions).

	Reactants	products
69 Names		→
69 Structural diagrams		→
70 Names		→
70 Structural diagrams		→

	Reactants structures and names	Products structures and names			
71a	-	→ 			
71b	-	→ 			
71c	-				
71d	_	→ 			
72. Ha the	 72. Halogens can be substituted ONLY into				

74. When you combine halogens with unsaturated hydrocarbons (alkenes/alkynes) a different reaction

happens called an _

reaction.

That's because when the double bond "opens up" to a single bond, and it opens up 2 spots for BOTH halogen atoms to join the molecule, or, a triple bond opens up into a double bond, and again, you ADD both halogens at once.

78 drawings

79. Draw the functional groups for alcohols and ethers	Functional group	General formula
Alcohols		
ethers		

"R" means the functional group bonds to a hydrocarbon here.

The R' (say R prime) means the functional group makes a bond to a different hydrocarbon here.

ALCOHOLS

- 80. Alcohols have an "–OH" group which is ______. Alcohols are MOLECULAR not ionic.
- 81. When the hydroxide anion is ionically bonded to a metal, that's an Arrhenius ______. Like... (*NaOH*, or *KOH*)

82. Alcohols are _____

	How many carbons?	Structural diagram	Condensed structural formula
83 Draw methanol	1 carbon		CH ₃ OH
Draw ethanol	2 carbons		
84 Draw ethanol with –OH on the "right" end	2 carbons		
Draw ethanol with –OH on the "bottom left"	2 carbons		

Add names	How many carbons?	Structural diagram	Condensed structural formula	
85 Draw	3 carbon			
85 Draw	3 carbon			
86. These are different ISOMERS				

 87. Draw and name the three different 5-carbon alcohol molecules Name the base chain (count carbon atoms) Enumerate where the alcohol group is located. Alcohol names always end with the –anol suffix 	

C atoms names of the alcohol molecules (these are ALL of the alcohol molecules in high school chem)

1 2 3	methanol ethanol 1-propanol, 2-propanol	Naming Alcohols
4	1-butanol, 2-butanol 1-pentanol, 2-pentanol, 3-pentanol	COUNT the number of carbon atoms.
6	1-hexanol, 2-hexanol, 3-hexanol	DETERMINE where the functional group is attached. When needed,
7 8	1-heptanol, 2-heptanol, 3-heptanol, 4-heptanol 1-octanol, 2-octanol, 3-octanol, 4-octanol	number <u>that</u> carbon in the name.
9 10	1-nonanol, 2-nonanol, 3-nonanol, 4-nonanol, 5-nonanol 1-decanol, 2-decanol, 3-decanol, 4-decanol, 5-decanol	Alcohol names always end with the <i>-</i> anol suffix

89. Why is there not an alcohol molecule named 4-pentanol? (Draw it, you can)

ETHERS

Ether molecules are easy to recognize because they have a single atom of oxygen in the middle, and make single bonds to the left and right

90. Ethers functional group looks like this:

91. and a general formula that looks like this:

92. Which means an R group is attached to an oxygen atom, and a different R prime group on the other side.

93	Methane	Take away one "H" atom to form…	Methyl group
94	Ethane		
95	Propane		

96	Butane	Take away one "H" atom to form…	butyl group
Alkane	es are SATURATED, they cannot UNLESS one H at an OPEN BOND, to atta	t be bonded to anything of tom is removed, and that ach (say) to an oxygen at	else, there is no way to do that, provides tom in an ether.
	Pentane would become	Hexane would	become
97	Heptane would become	Octane would	become
	Nonane would become	Decane would	become

98. Methyl ethyl ether	
Propyl butyl ether	
Pentyl methyl ether	
99 Diethyl ether	
Dimethyl ether	
Hexyl ethyl ether	

100.

What's the smallest possible ether?
What's the biggest ether?
What is the 2d biggest ether?
Can there be double bonds, or triple bonds in <i>our</i> ethers?
Can there be alcohols or halogens be attached to <i>our</i> ethers?
Can there be two functional groups right next to each other?
Can there be 2 or more alcohol groups on one molecule?

ALDEHYDES and KETONES

101.	Aldehydes + Ketones w	ve will examine together, since they are	thing.
	When they both have the	ne same number of carbon atoms, they are	
102.	Both have a	bond, just in different places.	

 103. Aldehydes always have the C=O at the end of a hydrocarbon chain.

 WRITE:

 104. Ketones always have the C=O in the middle of a hydrocarbon chain.

 WRITE:

 105. Name and draw the 3 carbon aldehyde

 Name and draw the 3 carbon ketone

106. Draw these aldehydes and ketones		
METHANAL HCHO	BUTANONE CH ₃ COCH ₂ CH ₃	
ETHANAL CH3CHO	2-PENTANONE CH ₃ COCH ₂ CH ₂ CH ₃	
BUTANAL CH ₃ CH ₂ CH ₃ CHO	3-PENTANONE CH ₃ CH ₂ COCH ₂ CH ₃	

Organic Acids

107. An organic acid will release ______ in solution, just like Arrhenius acids.

108. Organic acids contain the acid functional group called the "_____" group

The R is the hydrocarbon chain that the acid group attaches to. This -COOH group always attaches at the end of the chain in our class (otherwise they get too complicated to name - wait until college!)

109. Acid functional group to the "left" side	109. Acid functional group to the "right" side
110a draw methanoic acid	110b draw ethanoic acid
110c draw propanoic acid	110d draw hexanoic acid
110e draw nonanoic acid	

111. The whole list of acids in high school includes (fill in the blanks) (think too)		
# carbon atoms	Name	Condensed Structural formula
1	Methanoic acid	НСООН
2	Ethanoic acid	
3	Propanoic acid	
4	Butanoic acid	CH ₃ (CH ₂) ₂ COOH
5	Pentanoic acid	
6	Hexanoic acid	
7	Heptanoic acid	
8	Octanoic acid	CH ₃ (CH ₂) ₆ COOH
9	Nonanoic acid	
10	Decaonic acid	

112. Copy this chart these are the same molecules with different names.		
Acetic Acid	Ethanoic Acid	
These molecules are identical but have different names. Acetic is "inorganic" style. Ethanoic is "organic" style. But they are identical molecules. Both are weak acids, both are weak electrolytes, both are vinegar, both are the same thing with different names.		

114. Draw Propanoic acid "to the left" and "to the right". Be sure you can see it in both directions.

ESTERS

115. The next functional group are the ESTERS. They tend to smell			
They form from a reaction between an		and an	
116. This reaction is called		·	
117. The ester functional group looks like this:	p		
LAST NAME $-C - O$	– FIRST NAME thumb side	LAST NAME hand side	D — FIRST NAME thumb side
The ESTER group makes an "L" sha	pe, like your hand.		
118. The THUMB side, is the			
119. The hand side, or		side.	
120. We ALWAYS name ESTERS the		first.	
121. Thumb to the		of the	e functional group.
122. Thumb to the		of the functional gro	oup, either direction!

123.Draw Methyl Propanoate (ester) in both directions, left and right.		
To the right		
Condensed structural formula		
To the left		
Condensed structural formula		
124. Draw butyl propanoate		
125. Draw methyl hexanoate		
125. Draw ethyl methanoate		

126. Draw		
ethyl propanoate		
(2—3)		
126. Draw		
propyr ethanoate		
(3—2)		
127. Draw		
propyl methanoate		
(3—1)		
Amines and Amides Amines and Amides are sit	milar (in the same way aldehydes + ketones were).	
128.The Amines + Amides	both contain	
129. Count to 3 for nitrog	en, N must always make bonds.	
130. Amine groups can be	e on the	of a hydrocarbon chain
131. Amide groups are alv	vays (of a hydrocarbon chain.
Change the table	as shown now. In our class, these are simpler with _1	NH ₂ ends
Change the table i	²⁵ shown now. In our class, these are simpler with "	
132. Nitrogen atoms can f	form bonds of 3 chains	

R—

124 1 1	125 1 4 1 1
134. draw methananine	155. draw methammide
136. draw ethanamine	137. draw ethanamide
138 draw 3-pentanamine	139 draw pentanamide (no number?)

Organic Chemical Reactions: Substitution, Addition, Fermentation, Esterification, Polymerization and Saponification

140. Propane + fluorine yields 1-flouopropane + HF

141. Ethane + chlorine yields...

142. Butane + iodine yields 2-iodobutane + HI

143. Ethene + Bromine yields 1,2 dibromoethane

144. Propene + chlorine \rightarrow 1,2dichloropropane

145. Ethyne and fluorine \rightarrow 1,2 difluoroethene

146. Fermentation is the organic chemical reaction that YEAST can turn

_____ into _____ and _____

147. Yeast excrete waste products called ethanol + CO_2

148.

149. Balance this reaction: glucose forms ethanol and carbon dioxide gas

150. Polymerization...

151. POLY—MER—IZATION

152. A "mer" is a molecule or unit.

153. A lot of "mers" (draw the diagrams...)

the polyethene formula is (-CH₂CH₂-)_n

This means that the "unit" of 2 carbons and 4 hydrogen atoms link together to form chains of

154. Other polymers that you are familiar with		"mer"
PVC, or polyvinyl chloride	Polychlorethene	
Polyethylene	Polyethene	
Styrofoam	Polystyrene	$H \qquad H \qquad$
Teflon	Tetrachloroethene	

ESTERIFICATION

is the reaction between acids and alcohols. These molecules "face" each other, functional groups close, and we take out HOH (water). The rest of the molecules then bond together making an ester with that famous COO group in the middle making an "L" shape.

155. _____

156. Combine propanoic acid + ethanol

157.butanoic acid + 1-propanol form an ester + water

SAPONIFICATION (what if you "misspell this??)

158. saponification is the organic chemical reaction that makes

159. The word equation for making soap is always...

160. The reactants for saponification

161. products of saponification

Triglyceride

Circle the triple ester + three bases make circle the triple alcohol + three soap "molecules"

ISOMERS and Branched Hydrocarbons (first vocabulary)

isotopes	chemically identical atoms with different atomic masses (different # neutrons) which are the reason for average atomic masses being decimals.
allotropes	Examples are graphite and diamonds, both pure carbon They are bonded differently and have different properties. If you don't believe that, try to take the regents with a diamond, or get engaged with a pencil! Also, oxygen and ozone, O_2 and O_3 are allotropes.
167. isomers	

168. Examples include ethanol and dimethyl ether. Draw the structural + chemical formulas for these.		
	Structural diagrams	Condensed structural formulas
Ethanol		
Dimethyl ether		

Draw 2methylhexane which is a pentane with a "methyl" group attached to carbon #2.

170. Draw this, name this, then draw an isomer of it.

171. Draw 4-methyl, 5-ethyl nonane

172. Draw 7ethyl, 8-fluoro, 2-nonyne