Determining the Concentration of CO_2 in Seltzer

Objective: To determine Molarity of the CO_2 in seltzer, and the Parts Per Million of CO_2 in seltzer, and finally, the percent by mass of the CO_2 in seltzer.

Procedure: READ THIS ALL FIRST then do what it says

- Get a CLEAN and dry a 100 mL beaker. Clean it if necessary, then dry it well.
- MASS the BEAKER with a STIRRING MAGNET
- POUR about 80 to 100 mL of seltzer CAREFULLY (lots of important bubbles) into the beaker on the scale.
- IMMEDIATELY record the total MASS of the seltzer and beaker and stirring magnet
- Put beaker onto the stirring machine on low, slowly increase the spin speed, but DO NOT SPILL A DROP.
- DO NOT RUSH stir this up for 25 minutes
- Slow down, then turn off the stirring magnet before picking up the beaker.
- Mass the beaker at the end, which contains water now (all carbon dioxide has exited)
- Remember that the density of water = 1.0 g/mL, so our mass of water in grams = mL of water too
- Wash everything with SOAP, then put this all upside down to drain please.

Step	DATA	Measurement
1	mass beaker + stirring magnet	
2	mass beaker + stirring magnet + seltzer at START	
3	Mass of the seltzer ONLY	
4	mass beaker + stirring magnet + WATER at END	
5	mass of water ONLY	
6	Volume of water	
7	Mass of MISSING CO ₂	

- $1.7 \ge 10^1$ Lab Questions: show all work.
- 1. Calculate the MOLARITY of CO₂ in your seltzer. (You MUST show a formula and math)
- 2. Calculate the PPM of CO₂ in your seltzer. (You MUST show a formula and math)
- 3. Calculate the % by mass of CO_2 in your seltzer. (You MUST show a formula and math)
- 4. The actual Molarity of CO_2 in seltzer is 0.14 M. What is your percent error?
- 5. The actual value for PPM of CO_2 in seltzer is 5800 PPM. What is your percent error?
- 6. How many grams of cobalt (II) nitrate are in 49.0 mL of 3.25 M Co(NO₃)_{2(AQ)} ?
- 7. A 4,250. mL solution of sodium hypochlorite contains 395.0 grams of solute. This is the white powder that most non-chemists call "chlorine powder" that they use in their swimming pools. What is this solution's molarity?
- 8. Would NaClO_(AQ) conduct electricity? Explain why or why not?
- 9. If you have a 3.25 M NaClO_(AQ) stock solution, explain how would you prepare 250.0 mL of a 0.975 M NaClO_(AQ) from it? You MUST use a formula, do the math, and then, DRAW a diagram to show how to mix this solution.
- 10. How would you prepare 250.0 mL of a 0.975 M 0.975 M NaClO_(AQ) from scratch? You MUST use a formula, do the math, and then, DRAW a diagram to show how to mix this solution.
- 11. If you have 4.00 M calcium chloride stock solution, how do you prepare a 125.0 mL of 2.25 M solution from it? You MUST use a formula, do the math, and then, DRAW a diagram to show how to mix this solution.
- 12. Explain why you cannot prepare a 1.2 M NH₄OH_(AQ) using a 0.95 M NH₄OH_(AQ) stock solution.
- 13. Skip.
- 14. What is the molarity of a saturated solution of potassium chloride at 30°C?
- 15. If your saturated solution of KI at 5°C is warmed up to 15°C, does the Molarity of this solution change? Math is always okay, but it's not necessary here.
- 16. If you have a 100 mL saturated solution of NH_{3(AQ)} at 10°C and warm it up to 90°C, does the Molarity of this solution change? Math is always okay, but it's not necessary here either.
- 17. When you have no stock solution on hand, which formula do you use to make another solution from it, the molarity formula or the dilution formula?
- 18. A solution contains just 0.0033 grams of Na^{+1} cations per 500. mL. What is the PPM of Na^{+1} in this solution?

	This lab report requires	points
1	Cover page + introduction sentence	2
2	Filled in data table	4
calculations	17 problems	34
This lab is due on:		